Kitdze

Пользователи
  • Content count

    72
  • Joined

  • Last visited

  • Days Won

    54

Everything posted by Kitdze

  1. Да, что-то здешний борд погиб, паства ушла куда то.
  2. Ох, тогда сперва следовало бы погрузиться в изучение мат.части и теории вопроса, ибо без понимания всего основного в построении и работоспособности надёжных радиолинков, об FPV можно забыть. На форумах море инфы на сей счёт. Этот форум почти всеми покинутый, так что оптимальнее покурить иные борды на сей счёт.
  3. Чьи-то там готовые решения - всегда какие-то компромиссные. Хочешь сделать хорошо - сделай это сам! Поспешил с Таранисом. Прежде чем на что-то тратиться из незнакомой темы - сперва надо курить форумы, хотя бы с пару-тройку месяцев, а лучше не менее года! Только тогда начнёт приходить некое понимание что именно и как делать, что и где брать. Иначе - бапки на ветер.
  4. Тема продублирована из rcdesing. Найдена FPV модель самолёта "Нано Талон" и доставлена в местный клуб. Он весь целый, видимо сел сам, или его "приземлили". Обнаружен в районе деревни "Десна". Это новая Москва. Клуб в Ватутинках. Так что ждем хозяина, точнее оператора данного судна. Телефон для связи +7 968 642 99 семь ноль. Алексей. Фото самолёта: https://yadi.sk/i/1uNmQuscb-htkg https://yadi.sk/i/_LjM14r-FJJ2CQ https://yadi.sk/i/riM1_TNrndpihg https://yadi.sk/i/r3BSdhFWZ07_IQ
  5. Эх, зря! Неверное решение, относительно "излишней навороченности". Дело не в изобилии встроенных в меню миксеров для разных типов моделей, а в уникальном, помехозащищённом протоколе передачи управляющих инфо-кадров по радиоканалу, FASST. Никакие китайские нонейм поделки и близко не лежали с настоящей Футабой, по надёжности радиоканала, самого главного в системе ДУ. Но новички об этом обычно не думают, в виду не понимания всей глубины нюансов, так как пока не теряли из-за отказов управления дорогие и не очень, модели. Но всё приходит с опытом, в том числе и понимание разницы между брендом и ширпотребно-китайскими поделками игрушечного плана, коими и являются всякие там Фрискаи, Флайскаи и т.п... Вот как начнёте терять разбитыми модели, так и начнёт постепенно приходить понимание, что всё же зря сменили систему управления с хорошей, на детско-никакущую. За 25+ лет эксплуатации всяко-разных систем РУ, знаю о чём повествую. Ещё весьма приличный и высоконадёжный радиопротокол передачи у Jeti 24.
  6. - Part two Spectrum Analyzer with Tracking Generator SSA-TG R2 The second device is no less interesting than the vector reflectometer. It allows you to measure "through" the parameters of various microwave devices in the mode of 2-port measurements (type S21). For example, you can test the performance and accurately measure the gain of boosters, amplifiers, or the amount of signal attenuation (loss) in attenuators, filters, coaxial cables (feeders), and other active and passive devices and modules, which cannot be done with a single-port reflectometer. This is a full spectrum analyzer, in a very wide and continuous frequency range, which is far from common among inexpensive amateur equipment. There is an additional built-in tracking generator of radio frequency signals (also in a wide range) and a help to the vector reflectometer and antenna meter. This allows to check for carrier frequency deviations in the transmitters, spurious intermodulation, clippings and others. The inclusion of a tracking generator and a spectrum analyzer when adding an external directional coupler (or bridge), makes it possible to measure the same VSWR antenna--though only in the scalar measurement mode--without taking into account the phase, as it would be on the vector one. Link to factory instructions: This device was mainly compared with the combined measuring complex GenCom 747A, with a limit on the upper frequency to 4 GHz. In addition, a new power meter of the precision class Anritsu MA24106A participated in the tests, with correction tables wired at the factory for the measured frequency and temperature, normalized to 6 GHz in frequency. Own noise shelf of the spectrum analyzer, with a matched “dummy” at the input: A minimum of -85.5 dB (with Att -20dB) was in the region of the LPD (426 MHz). Further, with increasing frequency, the noise threshold also increases slightly, which is quite natural: 1500 MHz - 83.5 dB. 2400 MHz - 79.6 dB. At 5800 MHz - 66.5 dB. Measurement of the gain of the active Wi-Fi booster, based on the XQ-02A module A feature of this booster is an automatic switch that, when supplied, does not immediately keep the amplifier in the on state. Experimentally sorting out the attenuators on a large device, we managed to locate the threshold for turning on the built-in automation. It turns out that the booster switches to the active state and begins to amplify the transmitted signal only if it is more than minus 4 dBm (0.4 mW): For this test, the small device simply did not have the output level of the built-in generator, which has an adjustment range documented in the technical specifications from minus 15 dBm to minus 25 dBm. It is already minus 4 dBm which is much greater than minus 15 dBm. Yes, it is possible to use an external amplifier but the task would be different. With a large device, I measured the gain of the “switch on” booster which turned out to be 11 dB in accordance with the performance characteristics. The small device then managed to find out the amount of attenuation on the “off” booster with the power supplied. It turned out that a de-energized booster 12,000 times attenuated the transmitted signal to the antenna. For this reason, once flying and forgetting to supply power to the external booster in a timely manner, the long-range hexacopter flying 60-70 meters stopped and switched to auto-return to the take-off point. There was then a need to know the magnitude of the pass through attenuation of the turned off amplifier. It turned out to be about 41-42 dB. 1-3500 MHz noise generator A simple amateur-made noise generator, Chinese production. A linear comparison of readings in dB is somewhat inappropriate in view of the constant change in amplitude at different frequencies which is caused by the very nature of the noise. Nevertheless, both devices managed to find very similar, comparative graphs of the frequency response: Here the frequency range on the devices were set equally, from 35 to 4000 MHz. As for the amplitude, one can see quite similar values are obtained. Feed-through frequency response (measurement S21), LPF 1.4 filter This filter was discussed in the first half of the review. There it measured the VSWR. Here, the frequency response of the transmission is clearly visible to include what attenuation is missed, as well as where and how much is cut. Here it is shown in more detail that both devices almost equally removed the frequency response of this filter: At a cut-off frequency of 1400 MHz, Arinst showed an amplitude of minus 1.4 dB (blue marker Mkr 4), and GenCom minus 1.79 dB (marker M5). Attenuator attenuation measurement For comparative measurements, I chose the most accurate, branded attenuators—other than the Chinese version in view of their rather large scatter. The frequency range remains equally from 35 to 4000 MHz. Calibration of the two port measurements were carefully performed with the obligatory control of the degree of surface cleanliness of all contacts on the mating coaxial connectors. 0 dB calibration result: The center of the specified band (i.e., 2009.57) was used as the median sampling frequency. The number of scan points was also equal, 1000 + 1 each. One will notice that the measurement results of the same instance of the attenuator at 40 dB are only slightly different. Arinst SSA-TG R2 showed 42.4 dB, and GenCom 40.17 dB, ceteris paribus. Attenuator 30 dB Arinst = 31.9 dB GenCom = 30.08 dB A roughly similar small variation in percentage was obtained when measuring other attenuators. But to save reader time and space in the article, they were not included in this review, since they are similar to the measurements presented above. Min and max track Despite the portability and simplicity of the device, the manufacturers have nevertheless added useful options such as displaying cumulative minimums and maximums of changing tracks--which is in demand with various settings. Three images are displayed in a gif photo using an LPF filter of the 5.8 GHz band as the example into the connection of which switching interference and disturbances were deliberately introduced: The yellow track is the current curve of the extreme sweep. Red track - the maximums from past sweeps collected in memory. The dark green track (after processing and compressing the pictures is gray) - respectively, the minima of the frequency response. Antenna VSWR Measurement As mentioned at the beginning of the review, this device has the ability to connect an external directional coupler (Direct coupler), or a measuring bridge offered separately (but only up to 2.7 GHz). The OSL calibration is programmatically provided to indicate to the device a reference point for VSWR. A directional coupler with phase-stable measuring feeders were shown that were already disconnected from the instrument after the VSWR measurements. Here it is presented in an expanded position so one can ignore the discrepancy to the apparent connection. The directional coupler is connected to the left of the device, but inverted marking back. Thereafter, the supply of the incident wave from the generator (the upper port) and the removal of the reflected input of the analyzer (the lower port) will be correct. The combined two photos show an example of this type of connection and removal of VSWR in the previously measured above circular polarization antenna type "Clover", in the range of 5.8 GHz. Since the possibility of measuring VSWR is not one of the main purposes of this device, it can nonetheless be viewed from the picture of the readings of the display, while there are still reasonable questions. A hard-set and unchangeable display scale of the VSWR graph includes a large value of as much as 6 units. Although the graph shows approximately the correct display of the VSWR curve of this antenna, it is shown with a numerical value. The exact value on the marker (i.e., tenths and hundredths) are not displayed. Only integer values are shown (i.e., 1, 2, 3 ...). As such, it remains an understatement of the measurement result which is acceptable to generally understand a suitable antenna or on damage—although it may be more difficult to use for fine-tuning and antenna. Integrated generator accuracy measurement Similar to an VR 23-6200, two decimal places are declared in the technical parameters. It would be naive to expect from a budget-pocket device that there is a rubidium frequency standard on board. *smiley smile* The inquisitive reader will nevertheless be interested in the magnitude of the error in such a tiny generator. But, since the attorney precision frequency counter was available only up to 250 MHz, he limits himself to viewing only 4 frequencies below the range, just to understand the error trend, if any. It should be noted that at higher frequencies, photographs were also prepared from another device. But to save space in the article, they are not included in this review since the numerical confirmation of the same percentage is a percentage of the error in the lower digits. Four photos at four frequencies were collected in a gif picture to also save space: 50.00; 100.00; 150.00 and 200.00 MHz: The trend and the magnitude of the available error are clearly visible: 50.00 MHz has a shallow excess of the generator frequency, namely 954 Hz. 100.00 MHz, respectively, a little more, +1.79 KHz. 150.00 MHz, even more +1.97 kHz 200.00 MHz, +3.78 KHz Further up the frequency was measured by a GenCom analyzer, which turned out to be a good frequency counter. For example, if the generator built into GenCom missed 800 hertz at frequency of 50.00 MHz, then not only the external frequency counter showed this, but the spectrum analyzer itself measured exactly the same: Next, one of the photos of the display, with the measured frequency of the generator built into the SSA-TG R2, using the example of the midpoint of the Wi-Fi range of 2450 MHz: To reduce the space in the article, I also did not upload the other similar photographs of the display, instead they briefly squeezed the measurement results over the ranges above 200 MHz: At frequency of 433.00 MHz, the excess was +7.92 KHz. At a frequency of 1200.00 MHz, = +22.4 KHz. At a frequency of 2450.00 MHz, = +42.8 KHz (in the previous photo) At a frequency of 3999.50 MHz, = +71.6 KHz. But nevertheless, the two decimal places declared in the factory characteristics are clearly maintained across all ranges. Signal amplitude measurement comparison In the following gif picture 6 photos were collected where the Arinst SSA-TG R2 analyzer measures its own generator at six frequencies randomly selected. 50 MHz -8,1 dBm; 200 MHz -9,0 dBm; 1000 MHz -9,6 dBm; 2500 MHz -9,1 dBm; 3999 MHz — 5,1 dBm; 5800 MHz -9,1 dBm Although the declared maximum amplitude of the generator is not higher than minus 15 dBm, other values are actually visible. To find out the reasons for such an indication of the amplitude, measurements were taken from an Arinst SSA-TG R2 generator, with an Anritsu MA24106A precision sensor with calibration zeroing at a matched load, before starting measurements. A frequency value was entered each time for measurement accuracy, taking into account the coefficients, according to the correction table included from the factory for frequency and temperature. 35 MHz -9.04 dBm; 200 MHz -9.12 dBm; 1000 MHz -9.06 dBm; 2500 MHz -8.96 dBm; 3999 MHz - 7.48 dBm; 5800 MHz -7.02 dBm The amplitude of the generated signal by the SSA-TG R2 integrated generator shows the analyzer measurements are very worthy (for the amateur accuracy class). The generator amplitude displayed at the bottom of the instrument’s display, as it turns out, is simply “drawn”. In reality it produces a higher level than it should in adjustable limits from -15 dBm to -25 dBm. A level of doubt creped in as to whether the new Anritsu MA24106A sensor was malfunctioning until a comparison was made with another laboratory system analyzer from General Dynamics, model R2670B. The discrepancy in amplitude was minimum and within 0.3 dBm. The power meter on the GenCom 747A similarly showed the available excess level from the generator: At the level of 0 dBm, the Arinst SSA-TG R2 analyzer slightly exceeded the amplitude indicators from different signal sources with 0 dBm. At the same time, the Anritsu MA24106A sensor shows 0.01 dBm from the Anritsu ML4803A calibrator It seems an inconvenience to adjust the attenuator attenuation on the touchscreen with your finger. The list ribbon skips and/or returns to its extreme value. It seems to be more convenient and accurate to use the old-fashioned stylus for this task: When viewing the harmonics of a low-frequency signal of 50 MHz and over practically the entire working band of the analyzer (up to 4 GHz), a certain “anomaly” was encountered at frequencies around 760 MHz: With a wider band at the upper frequency (up to 6035 MHz), the Span turns out at exactly 6000 MHz add the anomaly is also noticeable: At the same time, the same signal from the same built-in generator in SSA-TG R2, when applied to another device, does not have such an anomaly: Since this anomaly was not noticed on another analyzer means that the problem is not in the generator, but in the spectrum analyzer. The built-in attenuator for attenuating the amplitude of the generator, clearly attenuates in steps of 1 dB, all of its 10 steps. Here at the bottom of the screen you can clearly see the stepped track on the timeline, showing the attenuator performance: Leaving the generator output port and analyzer input port connected, I turned off the device. Turning it on the next day, I found a signal with normal harmonics at an interesting frequency of 777.00 MHz: In this case, the generator was left turned off which was confirmed in its the menu. In theory, nothing should have appeared at the output of the generator, if on the eve it was turned off. I had to turn it on at any frequency in the generator menu, and turn it off there. Thereafter, the strange frequency disappears (and will no longer appear) until the next time the device is turned on. Surely, in the subsequent firmware, the manufacturer will fix such a self-inclusion at the output of the generator while in the off position. If the cable between the ports is missing, then it is unnoticeable that something is wrong--unless the shelf of noise is slightly higher. And after forcibly turning the generator on and off, the noise shelf slightly becomes lower, but by an inconspicuous amount. This is a minor operational minus, the solution of which takes an extra 3 seconds after turning on the device. The interior of Arinst SSA-TG R2 is shown in three photos collected in gif: Comparison of dimensions with the old Arinst SSA Pro spectrum analyzer to a smartphone display (top): Advantages: As in the case of the Arinst VR 23-6200 reflectometer, which was reviewed previously, the Arinst SSA-TG R2 analyze is the exact the same form factor and miniature dimensions--but it is a serious assistant for the radio amateur. Unlike other SSA models, it does not require the use of an external display such as a computer or smartphone. A very wide, solid and uninterrupted frequency band, from 35 to 6200 MHz. I have not investigated the exact battery life, but the capacity of the built-in lithium battery should well accommodate a long battery life. A rather insignificant error in measurements for an instrument of such a miniature class which is more than enough at the amateur level. Physical hardware and firmware (and repairs if ever needed) are fully supported through the manufacturer. It is already widely available for purchase and ready to ship--as may not the case with other manufacturers. Cons were also seen: Unaccounted for and not well documented is the spontaneous supply to the output of a signal generator with a frequency of 777.00 MHz. I somewhat expect this to be eliminated in the next firmware release. When a user is informed of this feature, it is easily eliminated in 3 seconds by simply turning the built-in generator on and off. The touchscreen requires a bit of getting use to since not all virtual buttons turn on immediately with a slider if you shift them. If you immediately poke into the final positon without first moving the slider, then everything works as intended. This is probably not a minus, but rather a “feature” of the drawn controls, specifically in the menu of the generator and the slider for controlling the attenuator. When connected via Bluetooth, the analyzer, as it were, successfully connects to the smartphone, but the frequency response graph does not output, such as the outdated SSA Pro. When connecting, all the requirements of the instructions were fully complied with, described in section 8 of the factory instructions. It was thought that once the password is received, a confirmation of the connection is displayed on the smartphone screen, then this function is possible only for upgrading the firmware via the smartphone. But no. Clause 8.2.6 clearly states: 8.2.6. The device will connect to the tablet / smartphone, a signal spectrum graph and an information message about connection to the device Connected to ARINST_SSA will appear on the screen, as in Figure 28. (c) Manual: http://arinst.net/files/Manual-Spectrum_Analyzer_Arinst_SSA-TG_R2-ENG.pdf Yes, confirmation appears, but the track doesn’t. Repeatedly reconnected, each time the track did not appear. And from the old SSA Pro, right instantly. Another disadvantage of the notorious “versatility”, due to restrictions on the lower edge of the operating frequencies, is not suitable for short-wave radio amateurs. For that, for RC FPV, completely satisfy the needs of amateurs and professional, even more than that. Findings: In general, both devices left very positive impressions, since in essence they provide a complete measuring complex, at least even for the level of advanced radio enthusiasts. While pricing policy was not addressed, it is nonetheless noticeably lower than its closest analogues on the market with such a wide and continuous frequency band. The aim of the review was simply to compare these testers with more advanced measuring equipment, and to provide readers with photo-documented displays and enough information to form their own opinions. This review is not intended for the purpose of marketing or advertising. It is simply a third-party assessment and publication of observation results. Products webpage: http://arinst.net/arinst_vr-23-6200.php Sale eBay: https://www.ebay.com/usr/arinst Sale Aliexpress: https://www.aliexpress.com/store/907723?spm=a2g0o.detail.1000061.1.2a38254cx8hk0J Sale in Japan: http://shop-online.jp/ElectronicsDIY5/index.php?body=spec&product_id=1202524&category_id=149110&PHPSESSID=fba6b223f76a00c0c757da8f97009856 Sale in Russia: https://kroks.ru/shop/network-equipment/ Sale in China and Taiwan: http://www.ts-corp.com.tw/telecom/arinst-ssa-tg-r2 Thank you for looking.
  7. An independent review was conducted to test two of the compact radio frequency measuring instruments developed by the company, Kroks. The devices consist of a spectrum analyzer with a built-in signal generator and a vector network analyzer (reflectometer). Both devices cover a wide frequency range from 35 (23 for reflectometer) MHz to 6.2 GHz. My objective was to determine the utility value of these meters, and to better understand the manufacturer’s comment that the device is intended for amateur radio use, since it is not a professional measuring tool. The word “amateur” hints that the devices may be closer to a display meter as opposed to a comprehensive measurement device. It should be noted that these tests were conducted as an amateur user who would lack a thorough understanding of metrological studies of measuring instruments, or the basis of the standards of the state registry and related subjects. Radio amateurs are more interested in looking at comparative measurements of devices that are often used in practice (i.e., antennas, filters, attenuators), as opposed to theoretical “abstractions” commonly explored in metrology (i.e., mismatched loads, inhomogeneous transmission lines, or short-circuit lines). To avoid the influence of interference in the comparative measurement of antennas, an anechoic chamber or open space is required. In view of the absence of the first, measurements were taken outdoors. All antennas with directional radiation patterns “looking” into the sky were mounted on a tripod to avoid displacement in space when changing instruments. Low quality, Chinese-made adapters were not used due to the frequent lack of repeatability of contact during reconnection, as well as the shedding of the subpar antioxidant coating used instead of the usual gilding ... To obtain equal comparative conditions, the instruments were calibrated with the same set of OSL calibrators before each measurement, in the same frequency band and current temperature range. OSL is “Open”, “Short”, “Load”, which is a standard set of calibration measures: “open measure”, “short circuit measure” and “matched load 50.0 Ohm”, which are usually calibrated vector network analyzers. For the SMA format, the Anritsu 22S50 calibration kit was used and normalized in the frequency range from DC to 26.5 GHz, a link to the datasheet (49 pages): https://www.testmart.com/webdata/mfr...COMPONENTS.pdf For calibration of the N type format, respectively Anritsu OSLN50-1, normalized from DC to 6 GHz. The measured resistance at the coordinated load of the calibrators was 50 ± 0.02 Ohm. The measurements were carried out with proven, precision laboratory-grade multimeters from HP and Fluke. To ensure optimal accuracy and equal conditions in comparative tests, a similar bandwidth of the IF filter was installed on the devices--the narrower the band, the higher the measurement precision and the signal-to-noise ratio. The largest number of scan points (closest to 1000) was also selected. A link to the illustrated, factory set of instructions, will help to better understand the functions of the reflectometer: http://arinst.net/files/Manual_Vector_reflectometer_Arinst_VR_23-6200_ENG.pdf Before each measurement, all mating surfaces in coaxial connectors (SMA, RP-SMA, N type) were carefully checked, since at frequencies above 2-3 GHz, the cleanliness and condition of the antioxidant surface of these contacts begins to have a rather noticeable effect on the measurement results and stability their repeatability. It is very important to keep the outer surface of the central pin clean in the coaxial connector, and the inner surface of the collet mating with it in the mating half. All the same is true for “braided” contact. Such control and necessary cleaning is usually possible under a microscope, or under a high magnification lens. It is also important to prevent the presence of crumbled metal chips on the surface of the insulators in the mating coaxial connectors, because they begin to introduce a stray capacitance, significantly interfering with the performance and signal transmission. An example of a typical metallic clogging of SMA connectors that are not visible to the naked eye: According to the factory requirements of manufacturers of microwave coaxial connectors with a threaded type of connection, when connecting, it is NOT possible to allow the central contact of the collet entering it to be turned. To do this, it is necessary to hold the axial base of the screw-on half of the connector, allowing rotation of only the nut itself, and not the entire screw-on structure. This significantly reduces scratching and other mechanical wear of the mating surfaces, providing better contact and extending the number of switching cycles. Unfortunately, few amateurs are aware of this procedure or the damages caused by scratching the already thin layer of the contact’s working surfaces. This is evidenced by the large number of YouTube videos from the so-called "testers" of new microwave equipment. In this test review, all the numerous connections of the coaxial connectors were made strictly in compliance with the above operational requirements. In comparative tests, several different antennas were measured to check the reflectometer readings throughout different frequency ranges. Comparison of the 7-element Uda-Yagi antenna of the 433 MHz band (LPD) Antennas of this type always have a rather pronounced back lobe, as well as several side lobes. To maintain the purity of tests, all environmental conditions of immobility were especially observed--up to locking the cat in the house—while photographing the different display modes. This will assure there is no movement that ends up in the coverage area of the black lobe, thereby introducing indignation into the graph. The figures contain photos of four modes from three devices. The top image is from the VR 23-6200, the center from the Anritsu S361E, and the bottom from the GenCom 747A. VSWR Charts: Charts of the return loss: Volpert-Smith Impedance Charts: Phase graphs: As reflected in the images, the test graphs are very similar, and the measurement values have a dispersion within 0.1% of the error. 1.2 GHz coaxial dipole comparison VSWR: Return Loss: Volpert-Smith Chart: Phase: Likewise, and according to all three devices, the measured resonance frequency of this antenna were within 0.07%. 3-6 GHz horn antenna comparison An extension cable with N-type connectors were used which slightly introduced a non-uniformity in the measurements. The task was simply to compare the devices--not the cable or antenna. If there was a problem in the path, then the devices should show it accordingly. Calibration of the measuring plane taking into account the adapter and feeder: VSWR in the band from 3 to 6 GHz: Return Loss: Volpert-Smith Chart: Phase graphs: Comparison of the circular polarization antenna of the 5.8 GHz band VSWR: Return Loss: Volpert-Smith Chart: Phase: Comparative measurement of VSWR of the Chinese LPF filter 1.4 GHz Filter appearance: VSWR Charts: Comparative feeder length measurement (DTF - Distance to fault) I decided to measure a new coaxial cable, with N type connectors: Manually measured 3 meters 5 centimeters with a mechanical meter. The devices showed: Here, as they say, comments are superfluous. Comparison of accuracy of the built-in tracking generator On this gif picture, 10 photos of the readings of the frequency meter CH3-54 are collected. The upper halves of the pictures - the readings of the test VR 23-6200. The lower halves - signals from an Anritsu reflectometer. Five frequencies were chosen for the test: 23, 50, 100, 150 and 200 MHz. If Anritsu served the frequency with zeros in the lower digits, then compact VR served with a slight excess, numerically increasing with increasing frequency: Although according to the technical characteristics of the manufacturer, this cannot be a “minus”, since it does not go beyond the declared two categories after the decimal sign. Pictures collected in a gif about the internal "decoration" of the device: Benefits: The advantages of the VR 23-6200 are its low cost, portable compactness with full autonomy which does not require an external display from a computer or smartphone, and its fairly wide frequency range displayed in the marking. This is not a scalar meter, but a fully-fledged vector meter. As demonstrated from the results of comparative measurements, VR is somewhat equivalent to the larger, reputable and expensive devices. In situations that require climbing onto the roof (or mast) to clarify the condition of the feeders and antennas, its compact size makes it preferable over a large and heavier apparatus. FPV racing equipment (radio-controlled flying multicopter and airplanes, with on-board video broadcasting to glasses or displays) using the 5.8GHz frequency bands could benefit largely from this meter for selecting the optimal antenna (from a collection) or reconfiguring (straightening and/or adjusting) an existing antenna damaged following a crash. The “pocket-sized,” meter with its low end weight (which can easily hang on a thin feeder), makes the device convenient for many field applications. Small cons are also noticeable: 1) The greatest operational drawback of the VR 23-6200 is the inability to quickly find the minimum or maximum markers on the chart, not to mention the search for the “delta”, or the auto-search for subsequent (or previous) minima / maxima. The LMag and SWR modes also lack a marker management capability that is often useful. The marker must be activated in the corresponding menu and manually moved to the minimum of the curve in order to calculate the frequency and magnitude of the SWR at that point. Perhaps the manufacturer will add this function in a subsequent firmware update. 1 a) The meter appears not know how to reassign the desired display mode for markers when switching between measurement modes. For example, I switched from VSWR mode to LMag (Return Loss), and the markers still show the value of VSWR, while logically they should display the magnitude of the reflection modulus in dB, that is, what the currently selected graph shows. The same is true in all other modes. In order to read the values corresponding to the selected chart in the marker table, it is necessary to manually reassign the display mode for each of the 4 markers. It seems to be a trifle, but I would like to see some “automatism”. 1 b) In the most popular VSWR measurement mode, the amplitude scale cannot be switched to a more detailed one, less than 2.0 (for example, 1.5, or 1.3). 2) There is a small feature in inconsistent calibration as if always “open”, or in “parallel” calibration. That is, there is no sequential ability to record a calibrator measure readout, as is customary on other VNA devices. In the calibration mode the device successively prompts itself which one the (next) calibration measures should be installed and reads it out for accounting. ARINST, at the same time, grants the right to choose all three clicks of the measure record which imposes an increased requirement of attention from the operator when carrying out the next calibration stage. The need to press a button that does not correspond to the end of the currently connected calibrator may be confusing for some users and introduces the possibility of making an error. Perhaps in subsequent firmware upgrades, the creators of such an open "parallelism" of choice, "changes" the same in the "sequence", to exclude a possible error from the operator. After all, it is no accident that large instruments used precisely a clear sequence of actions for calibration measures to exclude such an error from confusion. 3) Very narrow calibration temperature range. If after calibration, Anritsu is provided with a range (for example) from +18°С to +48°С, then on Arinst it is only ±3°С from the calibration temperature, which may be small during field work (outdoors), in the sun, or in the shadows. For example: when calibrated after lunch and working with measurements until the evening, the sun has gone, the temperature has dropped and the readings are now inaccurate. A stop message should pop up stating the need to “recalibrate due to going beyond the temperature range of the previous calibration”. Instead, erroneous measurements begin with a biased zero, which significantly affects the measurement result. For comparison, here's how the Anritsu reflectometer reports this: 4) The room is normal, but for an open area a very dim display. On a sunny day, nothing is readable on the street, even if you shade the screen with your palm. Display brightness adjustment is not provided at all. 5) I have the desire to solder the hardware buttons to others, since some do not respond immediately after being pressed. 6) The touchscreen in some places is unresponsive, while in other places too sensitive. Conclusions on the VR 23-6200 Reflectometer Overlooking the few minuses when compared with other budget, portable and freely available solutions on the market (i.e., RF Explorer, N1201SA, KC901V, RigExpert, SURECOM SW-102, NanoVNA…) the Arinst VR 23-6200 appears to be the valued choice—due to the expensive pricing schemes of other devices, their non-universal and limited frequency bands, and a toy-like display screen. Despite the modesty low price, the VR 23-6200 vector reflectometer turned out to be a surprisingly decent and portable device. If the manufacturers had modified the minuses in it and slightly expanded the lower frequency edge for short-wave radio enthusiasts, this device would occupy the global sector podium and offering affordable coverage from 2 MHz for SW (160 meters) up to 5.8 GHz for FPV (5 centimeters) --preferably without gaps in the entire strip as shown in the RF Explorer example: We will most likely see cheaper solutions in the future to accommodate the wide range of frequencies. At the time of this review (July-August 2019), I believe this Arinst reflectometer to be the best portable, non-expensive, and commercially available devices in the global marketplace.
  8. Часть вторая Анализатор спектра с трекинг генератором SSA-TG R2 Второй прибор не менее интересный, чем векторный рефлектометр. Он позволяет провести измерения "сквозных" параметров различных СВЧ девайсов, в режиме 2-х портовых измерений (типа S21). Например, можно проверить работоспособность и точно измерить коэффициент усиления бустеров, усилителей, или величину ослабления сигнала (потери) в аттенюаторах, фильтрах, коаксиальных кабелях (фидерах), и прочих активных и пассивных устройствах и модулях, чего не получится сделать однопортовым рефлектометром. Это полноценный анализатор спектра, в весьма широком и не прерывном диапазоне частот, что далеко не часто встречается среди недорогой любительской техники. Кроме этого, имеется встроенный трекинг генератор сигналов радиочастот, так же в широком спектре. Тоже нужное подспорье к рефлектометру и антенному измерителю. Это позволяет посмотреть нет-ли девиации несущей частоты в передатчиках, паразитной интермодуляции, клиппирование и прочее... А имея следящий генератор и анализатор спектра, добавив внешний направленный ответвитель (или мост), становится возможным измерить тот же КСВн антенн, правда только в режиме скалярного измерения, без учёта фазы, как было бы на векторном. Ссылка на заводскую инструкцию: http://arinst.ru/files/Manual-Spectrum_Analyzer_Arinst_SSA-TG_R2-RUS.pdf Данный прибор в основном сравнивался с комбинированным, измерительным комплексом GenCom 747A, с ограничением по верхней частоте до 4 ГГц. Так же в тестах участвовал новый измеритель мощности прецизионного класса Anritsu МА24106А, с зашитыми на заводе поправочными таблицами на измеряемую частоту и температуру, по частоте нормированный до 6 ГГц. Собственная полка шума анализатора спектра, с согласованной "заглушкой" на входе: Минимум -85,5 дБ, оказался в районе LPD (426 МГц). Далее с ростом частоты, немного растёт и шумовой порог, что вполне закономерно: 1500 МГц - 83,5 дБ. 2400 МГц - 79,6 дБ. На 5800 МГц - 66,5 дБ. Измерение коэффициента усиления активного Wi-Fi бустера, на базе модуля XQ-02A Особенностью данного бустера является автомат включения, который при поданном питании, не сразу же держит усилитель во включенном состоянии. Опытным путём перебирая аттенюаторы на большом приборе, удалось узнать порог включения встроенной автоматики. Оказалось, что бустер переключается в активное состояние и начинает усиливать проходящий сигнал, только если он больше, чем минус 4 dBm (0,4 mW): Для данного теста на маленьком приборе просто не хватило выходного уровня встроенного генератора, который имеет задокументированный в ТТХ диапазон регулировок, от минус 15 до минус 25 dBm. А тут нужно было аж минус 4, что значительно больше, чем минус 15. Да, можно было применить внешний усилитель, но задача была в ином. Большим прибором измерил КУ включенного бустера, оказалось 11 dB, в соответствии с ТТХ. За то маленьким прибором удалось узнать величину ослабления вЫключенного бустера, но с поданным питанием. Оказалась, что обесточенный бустер в 12.000 раз ослаблял проходящий сигнал до антенны. По этой причине, однажды полетев и забыв своевременно подать питание на внешний бустер, лонгрэйндж гексакоптер пролетев 60-70 метров остановился и переключился на авто-возврат в точку взлёта. Тогда возникла необходимость узнать величину проходного ослабления выключенного усилителя. Оказалось около 41-42 дБ. Генератор шума 1-3500 МГц Простой генератор шума любительского класса, китайского производства. Линейное сличение показаний в дБ тут несколько неуместно, в виду постоянного изменения амплитуды на разных частотах, вызванные самой природой шума. Но тем не менее, с обеих приборов удалось снять очень схожие, сравнительные графики АЧХ: Тут диапазон частот на приборах был задан равный, от 35 до 4000 МГц. И по амплитуде как видно, получены тоже вполне схожие величины. Проходное АЧХ (измерение S21), фильтра LPF 1.4 В первой половине обзора этот фильтр уже упоминался. Но там измерялось его КСВн, а здесь АЧХ передачи, где хорошо видно что и с каким ослаблением он пропускает, а так же где и сколько режет. Тут более детально видно, что оба прибора почти одинаково сняли АЧХ данного фильтра: На частоте начала среза 1400 МГц, Arinst показал амплитуду минус 1,4 дБ (голубой маркер Mkr 4), а GenCom минус 1,79 дБ (маркер М5). Измерение ослабления аттенюаторов Для сравнительных измерений выбрал наиболее точные, фирменные аттенюаторы. Специально не китайские, в виду их довольно больших разбросов. Диапазон частот по прежнему равный, от 35 до 4000 МГц. Калибровка двух портового режима измерений, проведена так же тщательно, с обязательным контролем степени чистоты поверхности всех контактов, на сопрягаемых коаксиальных разъёмах. Результат калибровки по уровню 0 дБ: Частота выборки была сделана срединная, по центру заданной полосы, а именно 2009,57 МГц. Число точек сканирования тоже было равное, по 1000+1. Как видно, результат измерений одного и того же экземпляра аттенюатора на 40 дБ, получился хоть и близкий, но немного не совпадающий. Arinst SSA-TG R2 показал 42,4 дБ, а GenCom 40,17 дБ, при прочих равных условиях. Аттенюатор 30 дБ Arinst = 31,9 дБ GenCom = 30,08 дБ Примерно аналогичный небольшой разброс в процентном соотношении, был получен и при измерении других аттенюаторов. Но для экономии читательского времени и места в статье, в данный обзор они не вошли, так как схожи с выше представленными измерениями. Мин и макс трек Несмотря на портативность и упрощённость прибора, тем не менее производители добавили такую полезную опцию, как вывод на индикацию накопительные минимумы и максимумы изменяющихся треков, что бывает востребовано при различных настройках. Три снимка собранные в gif картинку, на примере LPF фильтра диапазона 5,8 ГГц, в подключение которого нарочито вносились коммутационные помехи и возмущения: Желтый трек - текущая кривая крайнего хода развёртки. Красный трек - собранные в памяти максимумы из прошлых развёрток. Тёмно-зелёный трек (после обработки и сжатия картинок серый) - соответственно минимумы АЧХ. Измерение КСВн антенн Как было упомянуто в начале обзора, у данного прибора имеется возможность подключения внешнего направленного ответвителя (Direct coupler), или измерительного моста предлагаемого отдельно (но только до 2,7 ГГц). Программно предусмотрено проведение OSL калибровки, для указания прибору точки отсчёта по КСВн. Здесь показан направленный ответвитель с фазостабильными измерительными фидерами, но уже отсоединённый от прибора после окончания проведения измерений КСВн. Но здесь он представлен в развёрнутом положении, так что не обращайте внимание на несоотвествие к кажущемуся подключению. Направленный ответвитель подключается слева к прибору, но в перевёрнутом маркировкой назад виде. Тогда подача падающей волны с генератора (верхний порт) и снятие отражённой на вход анализатора (нижний порт), получится правильно. На совмещённых двух фотографиях, показан пример такого подключения и снятие КСВн у ранее уже измеренной выше, антенны круговой поляризации типа "Клевер", диапазона 5,8 ГГц. Поскольку такая возможность измерения КСВн и не является среди основных назначений данного прибора, но тем не менее к ней (как видно по снимку показаний дисплея), всё же имеются резонные вопросы. Жестко заданный и не изменяемый масштаб отображения графика КСВн, с большой величиной аж в 6 единиц. Хотя на графике приблизительно правильное отображение кривой КСВн данной антенны, но вот в числовом значении, почему то вообще не отображается точное значение на маркере, не выводятся десятые и сотые доли. Отображаются только целые величины, как 1, 2, 3... Остаётся как бы недосказанность результата измерения. Хотя для грубых прикидок, что бы в целом понять годная антенна или на повреждении, очень даже приемлемо. Но вот тонкие настройки в работе с антенной, сделать будет сложнее, хотя и вполне возможно. Измерение точности встроенного генератора Так же как и у рефлектометра, тут тоже заявлено в ТТХ только 2 знака точности после запятой. Всё таки наивно ожидать от бюджетно-карманного приборчика, наличие на борту рубидиевого стандарта частоты. *смайлик улыбка* Но тем не менее пытливому читателю наверняка станет интересна величина погрешности, у столь миниатюрного генератора. Поскольку поверенный прецизионный частотомер был доступен только до 250 МГц, то ограничился просмотром всего на 4-х частотах внизу диапазона, просто что бы понять тенденцию погрешности, если таковая обнаружится. Следует заметить, что и на более высоких частотах так же были приготовлены фотографии с другого прибора. Но для экономии места в статье, они тоже не вошли в данный обзор, по причине подтверждения численно такой же в процентном соотношении величины, имеющейся погрешности в младших разрядах. Четыре фотографии по четырём частотам, были собраны в gif картинку, так же для экономии места: 50,00; 100,00; 150,00 и 200,00 МГц Хорошо видна тенденция и величина имеющейся погрешности: 50,00 МГц имеет мелкое превышение частоты генератора, а именно на 954 Гц. 100,00 МГц, соответственно чуть больше, +1,79 КГц. 150,00 МГц, ещё больше +1,97 КГц 200,00 МГц , +3,78 КГц Далее в верх частота была измерена анализатором GenCom, у которого оказался хороший частотомер. Вот к примеру, если встроенный в GenCom генератор недодавал 800 герц на частоте 50,00 МГц, то не только внешний частотомер это показал, но и сам анализатор спектра ровно столько же и измерил: Далее одна из фотографий дисплея, с измеренной частотой встроенного в SSA-TG R2 генератора, на примере серединки Wi-Fi диапазона 2450 МГц: Для сокращения места в статье, так же не стал выкладывать остальные схожие фотографии дисплея, вместо них краткая выжимка результатов измерений по диапазонам выше 200 МГц: На частоте 433,00 МГц, превышение составило +7,92 КГц. На частоте 1200,00 МГц, = +22,4 КГц. На частоте 2450,00 МГц, = +42,8 КГц (на предыдущем фото) На частоте 3999,50 МГц, = +71,6 КГц. Но тем не менее, заявленные в заводских характеристиках два знака после запятой, по всем диапазонам выдержаны чётко. Сравнение измерения амплитуды сигнала На представленной далее gif картинке, собраны 6 фотографий, где анализатор Arinst SSA-TG R2, сам измеряет свой собственный генератор, на произвольно выбранных шести частотах. 50 MHz -8,1 dBm; 200 MHz -9,0 dBm; 1000 MHz -9,6 dBm; 2500 MHz -9,1 dBm; 3999 MHz - 5,1 dBm; 5800 MHz -9,1 dBm Хотя и заявлена максимальная амплитуда генератора не выше минус 15 dBm, но на поверку видны иные значения. Для выяснения причин таковой индикации амплитуды, были проведены измерения с генератора Arinst SSA-TG R2, на прецизионном датчике Anritsu MA24106A, с калибровочным обнулением на согласованной нагрузке, перед началом измерений. Так же каждый раз вводилось значение частоты, для точности измерения с учётом коэффициентов, согласно вшитой с завода поправочной таблице для частоты и температуры. 35 MHz -9,04 dBm; 200 MHz -9,12 dBm; 1000 MHz -9,06 dBm; 2500 MHz -8,96 dBm; 3999 MHz - 7,48 dBm; 5800 MHz -7,02 dBm Как видно значения амплитуды сигнала выдаваемого встроенным в SSA-TG R2 генератором, анализатор измеряет весьма достойно (для любительского класса точности). А индицируемая внизу дисплея приборчика амплитуда генератора, получается что просто "нарисована", так как реально он оказалось выдаёт побольше уровень, чем должен в регулируемых пределах от -15 до -25 dBm. В закравшееся было сомнение, а не подвирает ли новый сенсор Anritsu MA24106A, специально провёл сравнение ещё с одним лабораторным системным анализатором от General Dynamics, модели R2670B. Но нет, расхождение в амплитуде оказалось совсем не большим, в пределах 0,3 dBm. Измеритель мощности на GenCom 747A, тоже не далеко показал, имеющееся превышение уровня с генератора: А вот на уровне 0 dBm, анализатор Arinst SSA-TG R2 почему то немного превышал амплитудные показатели, причём с разных источников сигнала с 0 dBm. При этом сенсор Anritsu MA24106A показывает 0,01 dBm от калибратора Anritsu ML4803A Регулировать величину ослабления аттенюатора на тачскрине пальцем, показалось не очень удобным, так как лента со списком проскакивает, или часто возвращается на крайнее значение. Оказалось удобнее и точнее, для этого использовать старомодный стилус: При просмотре гармоник низкочастотного сигнала 50 МГц, почти по всей рабочей полосе анализатора (до 4Ггц), встретилась некая "аномалия", на частотах около 760 МГц: При более широкой во верхней частоте полосе (до 6035МГц), что бы Span получился ровно 6000 МГц, аномалия так же заметна: При этом этот же самый сигнал, с этого же встроенного генератора в SSA-TG R2, при подаче на другой прибор, таковой аномалии не имеет: Раз на другом анализаторе данной аномалии не замечено, значит не в генераторе проблемка, а в анализаторе спектра. Встроенный аттенюатор по ослаблению амплитуды генератора, чётко ослабляет с шагом по 1 дБ, все своих 10 ступеней. Тут внизу экрана хорошо видно ступенчатый трек на временнОй шкале, показывающий работоспособность аттенюатора: Оставив соединёнными выходной порт генератора и входной порт анализатора, выключил прибор. на следующий день включив, обнаружил сигнал с нормальными гармониками на интересной частоте в 777,00 МГц. 3 фото собранные в gif: При этом генератор был оставлен выключенным. Проверив меню, действительно он оказался выключенным. По идее ничего не должно было появиться на выходе генератора, если накануне он был выключен. Пришлось в меню генератора включить его на любую частоту, и тут же выключить. После этого действия, странная частота пропадает и более сама не появляется, но только до момента следующего включения всего прибора. Наверняка в последующей прошивке производитель пофиксит такое самовключение, на выходе выключенного генератора. Но если кабель между портами отсутствует, то совершенно не заметно, что что-то не так, ну разве только полка шума немного выше. А после принудительного включения и выключения генератора, полка шума немножко становится ниже, но на малозаметную величину. Это мелкий эксплуатационный минус, на решение которого затрачивается лишних 3 секунды, после включения прибора. Внутреннее убранство Arinst SSA-TG R2, показано в трёх фото собранных в gif: Сравнение габаритов со старым анализатором спектра Arinst SSA Pro, на котором сверху лежит смартфон, в качестве дисплея: Плюсы: Как и в случае с предыдущем на обзоре рефлектометром Arinst VR 23-6200, рассмотренный здесь анализатор Arinst SSA-TG R2 является в точно таком же формфакторе и габаритах, миниатюрным, но достаточно серьёзным помощником радиолюбителя. Так же не требующим как прошлые модели SSA внешних дисплеев, на компьютере, или смартфоне. Весьма широкий, цельный и не прерываемый на полосы диапазон частот, от 35 до 6200 МГц. Точное время автономной работы не исследовал, но ёмкости встроенного литиевого аккумулятора хватает на продолжительное время автономной работы. Довольно незначительная погрешность в измерениях, для прибора такого миниатюрного класса. Во всяком случае для любительского уровня - более чем достаточная. Поддерживается производителем, как прошивками, так и физическим ремонтом, если понадобится. Уже широко доступен к приобретению, то есть не под заказ, как иногда бывает у других производителей. Минусы так же были замечены: Неучтённая и не документированная, самопроизвольная подача на выход генератора сигнала частотой 777,00 МГц. Наверняка устранится такое недоразумение очередной прошивкой. Хотя если знать об этой особенности, то легко за 3 секунды устраняется, простым включением и выключением встроенного генератора. К тачсикрину нужно немного привыкнуть, так как слайдером не все виртуальные кнопки сразу включаются, если их сдвигать. А вот если не сдвигать слайдеры, а сразу тыкнуть в конечное положение, то всё срабатывает сразу чётко. Это скорее не минус, а больше "особенность" нарисованных органов управления, конкретно в меню генератора и слайдера управления аттенюатором. При подключении по Bluetooth, анализатор как бы успешно подключается к смартфону, но трек графика АЧХ не выводит, как например утаревший SSA Pro. При подключении все требования инструкции были полностью соблюдены, описанные в разделе 8 заводской инструкции. Подумалось, что раз пароль принимает, на экран смартфона выводится подтверждении о коммутации, то возможно эта функция только для апгрейда прошивки через самртфон. Но нет. В пункте инструкции 8.2.6 чётко сказано: 8.2.6. Произойдет соединение прибора с планшетом/смартфоном, на экране появится график спектра сигнала и информационное сообщение о подключении к прибору ConnectedtoARINST_SSA, как на рисунке 28. (с) Да, подтверждение появляется, но вот трека - нет. Многократно переподключал, каждый раз трек не появлялся. А со старого SSA Pro, прям мгновенно. Ещё из минусов по пресловутой "универсальности", из-за ограничения по нижнему краю рабочих частот, не подходят для радиолюбителей коротковолновиков. За то для RC FPV, всецело и полностью удовлетворяют запросы любителей и профи, даже с лихвой. Выводы: В целом, оба прибора оставили очень положительные впечатления, так как по сути предоставляют собою укомплектованный измерительный комплекс, во всяком случае даже для уровня продвинутых радиолюбителей. Политика ценообразования здесь не рассматривается, но тем не менее она заметно ниже других ближайших аналогов на рынке в столь широкой и непрерывной полосе частот, что не может не радовать. Целью обзора было просто сравнить данные приборчики с более продвинутой измерительной техникой, и предоставить читателям фотодокументированные показания дисплеев, для составления собственного мнения и самостоятельного принятия решения о возможности приобретения. Ни в коем случае не преследовалось никаких рекламных целей. Только сторонняя оценка и публикация результатов наблюдений.
  9. На независимый тест-обзор поступила пара приборов российского разработчика "Kroks". Это довольно миниатюрные радиочастотные измерители, а именно: анализатор спектра со встроенным генератором сигналов SSA-TG R2, и векторный анализатор цепей (рефлектометр) VR 23-6200. Оба устройства по верхней частоте имеют диапазон до 6,2 ГГц, что привлекательно для применения в RC FPV. Появился интерес понять, это очередные карманные "показометры" (игрушки), или действительно достойные внимания приборы, потому как производитель их позиционирует: -"Прибор предназначен для радиолюбительского применения, так как не является профессиональным средством измерения." Вниманию читателей! Данные тесты проводились любительские, ни в коей мере не претендующие на метрологические исследования средств измерений, на основании стандартов государственного реестра и всего прочего с этим связанного. Радиолюбителям интересно посмотреть на сравнительные измерения часто применяемых на практике устройств (антенны, фильтры, аттенюаторы, усилители), а не теоретические "абстракции", как это принято в метрологии. Так что рассогласованные нагрузки, неоднородные линии передачи, или отрезки короткозамкнутых линий, в данном тесте не применялись. Для избежания влияния интерференции при сравнительном измерении антенн, требуется безэховая камера, или открытое пространство. В виду отсутствия первой, замеры проводились вне помещения, все антенны с направленными ДН "смотрели" в небо, будучи закреплёнными на штативе, без смещения в пространстве при смене приборов. То есть с исключением каких-либо внешних возмущений в ближней зоне (короче 1,5 лямбды). В тестах применялся фазостабильный коаксиальный фидер измерительного класса Anritsu 15NNF50-1.5C. А так же адаптеры N-SMA от известных компаний: Midwest Microwave, Amphenol, Pasternack, Narda, нормированные до частот 12,4; 18,0 и 26,5 ГГц, то есть более 6,2 ГГц верхней частотной границы данных приборов. Это важно для надёжности контактов и точности сравниваемых измерений. Дешёвые адаптеры китайского производства не применялись, в виду частого отсутствия повторяемости контакта при переконнекте на частотах свыше 2 ГГц, а также по причине осыпания не прочного антиоксидантного покрытия, которое у них применено вместо обычной позолоты. Для получения равных сравнительных условий, перед каждым измерением приборы калибровались одним и тем же комплектом OSL калибратора, в равной полосе частот и текущего температурного диапазона. OSL - это "Open", "Short", "Load", то есть стандартный набор калибровочных мер: "мера холостого хода", "мера короткого замыкания" и "согласованная нагрузка 50,0 Ом", которыми обычно калибруются векторные анализаторы цепей. Для формата SMA применялся калибровочный комплект Anritsu 22S50, нормированный в диапазоне частот от DC до 26,5 ГГц, ссылка на даташит (49 стр.): https://www.testmart.com/webdata/mfr...COMPONENTS.pdf Для калибровки формата N типа, соответственно Anritsu OSLN50-1, нормированный от DC до 6 ГГц. Измеренное сопротивление на согласованной нагрузке калибраторов, равнялось 50 +/-0,02 Ома. Измерения проводились поверенными, прецизионными мультиметрами лабораторного класса, фирм HP и Fluke. Для обеспечения наилучшей точности, а так же наиболее равных условий в сравнительных тестах, на приборах была установлена схожая полоса пропускания фильтра ПЧ, ибо чем Уже эта полоса, тем выше точность измерения и отношение сигнал/шум. Так же было выбрано наибольшее число точек сканирования (ближайшие к 1000), пусть и в ущерб скорости. Для ознакомления со всеми функциями рассматриваемого рефлектометра, имеется ссылка на иллюстрированную, заводскую инструкцию: http://arinst.ru/files/Manual_Vector...3-6200_RUS.pdf Перед каждым измерением тщательно проверялись все сопрягаемые поверхности в коаксиальных разъёмах (SMA, RP-SMA, N типа), потому как на частотах выше 2-3 ГГц, чистота и состояние антиоксидантной поверхности этих контактов, начинает оказывать довольно заметное влияние на результаты измерений и стабильность их повторяемости. Очень важно содержать в чистоте наружную поверхность центрального штырька в коаксиальном разъёме, и сопрягаемую с ним внутреннюю поверхность цанги на ответной половине. Всё тоже самое актуально и для "оплёточного" контакта. Такой контроль и необходимая чистка, обычно легко осуществимы под микроскопом, или под линзой с большим увеличением. Так же важно не допускать наличие осыпаемой металлической стружки на поверхности изоляторов в сопрягаемых коаксиальных разъёмах, потому как они начинают вносить паразитную ёмкость, заметно мешая работоспособности и прохождению сигнала. Пример типового металлизированного засорения разъёмов типа SMA, не заметных на глаз: Согласно фабричным требованиям производителей СВЧ коаксиальных разъёмов с резьбовым типом соединения, при соединении НЕЛЬЗЯ допускать проворачивания центрального контакта входящего в принимающую его цангу. Для этого необходимо удерживать осевое основание накручиваемой половины разъёма, допуская вращение только самой гайки, а не всей наворачиваемой конструкции. При этом значительно уменьшается царапанье и прочий механический износ сопрягаемых поверхностей, обеспечивая лучший контакт и продление числа циклов коммутации. К сожалению мало кто из любителей об этом знает, а большинство наворачивают целиком, каждый раз сцарапывая и без того тончайший слой рабочих поверхностей контактов. Об этом всякий раз свидетельствуют многочисленные видеоролики на Ю.Тубе, от так называемых "тестеров-испытателей" новой СВЧ техники. В данном тестовом обзоре, все многочисленные подключения коаксиальных разъёмов, осуществлялись строго с соблюдением вышеназванных эксплуатационных требований. На сравнительных тестах были измерены несколько различных антенн, для проверки показаний рефлектометра в разных частотных диапазонах. Сравнение 7-и элементной антенны Уда-Яги диапазона 433 МГц (LPD) Кастомная (самодельная) антенна с хорошей настройкой, с ярко выраженным резонансом. Поскольку у антенн данного типа всегда имеется довольно выраженный задний лепесток, а так же несколько боковых, то для чистоты сравнительных измерений были особо соблюдены все окружающие условия неподвижности, вплоть до запирания кота в доме. Что бы при фотографировании разных режимов на дисплеях, он незаметно не оказался в зоне действия заднего лепестка, там самым внеся возмущение в график. Сравниваем показания карманного приборчика, с показаниями "взрослых" приборов приличного класса. На картинках собраны сразу фотографии дисплеев с трёх приборов, по 4 режима с каждого. Верхний снимок с сабжевого VR 23-6200, средний с Anritsu S361E, а нижний с GenCom 747A. Графики КСВн: Графики отражённых потерь (Return Loss или LogMag) Графики диаграммы полных сопротивлений Вольперта-Смита: Графики фазы: (Пара снимков с третьего прибора была случайно утеряна, при обработке многочисленных фотографий) Как видно, получившиеся графики весьма схожи, а величины измерений имеют разброс в пределах 0,1% погрешности. Сравнение коаксиального диполя диапазона 1,2 ГГц Тоже кастомный (самодельный) диполь коаксиальной конструкции, с хорошей настройкой и ярко выраженным резонансом. Графики КСВн: Возвратные потери: Диаграмма Вольперта-Смита: Графики фазовых измерений: Тут тоже все три прибора по измеренной частоте резонанса данной антенны и величины измеренного КСВн, уложились в пределах 0,07%. Сравнение рупорной антенны диапазона 3-6 ГГц В этом тесте был задействован удлиняющий кабель с разъёмами N типа, немного внёсший неравномерность в измерения, несмотря на проведённую калибровку с его учётом. Но поскольку была задача просто сравнить приборы, а не кабеля или антенны, то если и попалась некая проблема в тракте, значит приборы должны её показать, как есть. Калибровка измерительной плоскости с учётом адаптера и фидера: КСВн в полосе от 3 до 6 ГГц: Возвратные потери: Диаграмма Вольперта-Смита: Фазовые графики: Сравнение антенны круговой поляризации диапазона 5,8 ГГц, типа "Клевер" Сравнительные графики КСВн (VSWR): Как можно видеть по третьим маркерам, приборы дали результаты измерений буквально один в один: Частота резонанса 5820 МГц, при КСВн 1,01. Соответственно и графики возвратных потерь тоже схожи, так как на столь "микроскопической" величине, ловить доли децибелл крайне сложно: Диаграмма Вольперта-Смита тут была снята в разных мастшабах: Графики фазы: Сравнительное измерение КСВн китайского LPF фильтра, с частотой среза 1.4 ГГц Внешний вид фильтра: Графики КСВн: Сравнительное измерение длины фидера (DTF) Решил измерить новый коаксиальный кабель, с разъёмами N типа: Двухметровой рулеткой в три приёма, намерил 3 метра 5 сантиметров. А вот что показали приборы: Тут как говорится комментарии излишни. Сравнение точности встроенного трекинг генератора На данной гиф картинке, собраны 10 фотографий показаний поверенного частотомера Ч3-54. Верхние половины картинок - это показания испытуемого VR 23-6200. Нижние половины - сигналы подаваемые с рефлектометра Anritsu. Для теста были выбраны пять частот: 23, 50, 100, 150 и 200 МГц. Если Anritsu подавал частоту с нулями в младших знаках, то компактный VR подавал с небольшим превышением, численно растущим с увеличением частоты: Хотя согласно ТТХ производителя, никаким "минусом" это являться не может, ибо не выходит за заявленные два разряда, после децимального знака. Пара картинок собранных в гифку, о внутреннем "убранстве" прибора Arinst VR 23-6200: Плюсы: Плюсами прибора VR 23-6200 является его невысокая стоимость, портативная компактность с полной автономностью, не требующая внешнего дисплея от компьютера или смартфона, при довольно широком диапазоне частот, отображённом в маркировке. Так же в плюс можно занести факт, что это не скалярный, а полноценно векторный измеритель. Как видно по результатам сравнительных измерений, VR практически не уступает большим, именитым и дорогостоящим приборам. Во всяком случае слазить на крышу (или мачту) для уточнения состояния фидеров и антенн, конечно же предпочтительнее с таким лёгким малышом, нежели с более крупным и тяжёлым аппаратом. А для ныне ставшим модным диапазона 5,8ГГц, для FPV рейсинга (радио-управляемые летающие мультикоптеры и самолёты, с бортовой видеотрансляцией на очки или дисплеи), так вообще "маст хэв". Так как позволяет прямо на полётах легко и точно выбирать оптимальную антенну из запасных, или даже на ходу выпрямить и настроить антенну, смятую после падения гоночной летающей машинки. Прибор можно сказать "карманный", и с малой собственной массой может легко повиснуть даже на тонком фидере, что удобно при проведении многих полевых и уличных работ. Минусы тоже замечены: 1) Наибольшим эксплуатационным недостатком у рефлектометра VR 23-6200, на мой взгляд, является невозможность оперативно найти маркерами минимум на графике, не говоря уже о поиске "дельты", или авто-поиск последующих (или предыдущих) минимумов/максимумов. Особенно часто это востребовано в режимах LMag и SWR, там сильно не достаёт такой возможности управления маркерами. Приходится активировать маркер в соответствующем меню, а позже вручную двигать его на минимум кривой, что бы считать частоту и величину КСВ в той точке. Возможно в последующих прошивках производитель добавит такую функцию. 1 а) Также прибор не умеет переназначать нужный режим отображения для маркеров, при переходе между режимами измерения. Например, переключился с режима VSWR на LMag (Return Loss), а маркеры по прежнему показывают значение VSWR, в то время как логично должны отображать величину модуля отражения в dB, то есть то, что показывает в данный момент выбранный график. То же самое и на всех иных режимах. Что бы в маркерной таблице прочесть значение соответствующие выбранному графику, каждый раз необходимо вручную переназначать режим отображения, для каждого из 4-х маркеров. Вроде мелочь, но хотелось бы небольшого "автоматизма". 1 б) В наиболее востребованном режиме измерения VSWR, амплитудный масштаб невозможно переключить на более детальный, менее 2,0 (например 1,5, или 1.3). 2) Имеется небольшая особенность в непоследовательном проведении калибровки. Как бы всегда "открытая", или "параллельная" калибровка. То есть не последовательная возможность записи считанной меры калибратора, как это принято на иных VNA приборах. Обычно в режиме калибровки, прибор последовательно сам подсказывает какую именно сейчас следует установить (очередную) калибровочную меру и провести её считывание для учёта. А на ARINST-е одновременно предоставлено право выбора всех трёх нажатий записи мер, что накладывает повышенное требование внимательности от оператора, при проведении очередного этапа калибровки. Хотя я ни разу не запутался, но нажать на кнопку не соответствующую присоединённого в данный момент конца калибратора, имеется лёгкая возможность допущения таковой ошибки. Возможно в последующих апгрейдах прошивки, создатели такую открытую "паралельность" выбора, изменят в "последовательность", для исключения возможной ошибки со стороны пользователя. Ведь неспроста же в больших приборах применена именно чёткая последовательность в действиях с калибровочными мерами, как раз для для исключения подобной ошибки от путаницы. 3) Узковат температурный диапазон калибровки. Если на Anritsu после калибровки предоставляется диапазон, например от +18°С до +48°С, то на Arinst всего +/- 3°С (от температуры калибровки), что может оказаться мало при полевых работах (на улице), на солнце, или в тени. Например: откалибровал после обеда, а работаешь с измерениями до вечера, солнце ушло, температура понизилась и показания пошли не корректные. При этом почему-то не всплывает стоп-сообщение, что мол - "перекалибруйтесь, по причине выхода за температурный диапазон прошлой калибровки". Вместо этого начинаются ошибочные измерения со смещённым нулём, что заметно сказывается на результате измерений. Для сравнения, вот как об этом сообщает рефлектометр Anritsu: 4) Для помещения нормальный, а вот для открытой местности в дневное время, очень тусклый дисплей. Солнечным днём на улице вообще не читабельно, даже если притенять экран ладонью. Регулировка яркости дисплея вообще не предусмотрена. 5) Аппаратные кнопочки хочется перепаять на другие, так как некоторые не сразу отрабатывают нажатия. 6) Тачскрин в некоторых местах не отзывчивый, а местами излишне чувствительный. Выводы по рефлектометру VR 23-6200 Если не цепляться к незначительным эксплуатационным минусам, то в сравнении с другими бюджетными, портативными и свободно доступными на рынке решениями, типа: RF Explorer, N1201SA, KC901V, RigExpert, SURECOM SW-102, NanoVNA - данный Arinst VR 23-6200 выглядит наиболее удачным выбором. Потому как у других либо цена уже весьма не бюджетна, либо в полосе частот ограничены и тем самым не универсальны, либо по сути являются скалярными показомерами игрушечного типа. Несмотря на скромность и относительно не высокую цену, векторный рефлектометр VR 23-6200 на поверку оказался на удивление вполне приличным прибором, да ещё и таким портативным по своим массо-габаритам. Ещё бы производители в нём доработали минусы и немного расширили нижний частотный край для радио-любителей коротковолновиков, то прибор занял бы пьедестал почёта среди всех мировых бюджетников подобного назначения, ибо получился бы доступный по цене охват: от "КаВэ до эФПэВэ", то есть от 2 МГц на КВ (160 метров), до 5,8 ГГц для FPV (5 сантиметров). И желательно без разрывов во всей полосе, не в пример как было на RF Explorer: Несомненно, вскоре наверняка будут появляться ещё более дешёвые решения, в столь широком частотном диапазоне, и это будет отлично! Но пока (на момент июнь-июль 2019), по моему скромному мнению, данный рефлектометр является наилучшим выбором в мире, среди портативных и не дорогих, серийно доступных предложений. (сравнительное тестирования анализатора спектра с трекинг генератором Arinst SSA-TG R2, во второй части)...
  10. Тогда оптимальнее смотреть в сторону готового, более-менее приличного решения от DJI. Хотя бы тот же Мавик. С апгрейдом, на таких летали до 17 км до точки разворота. Чем вам не лонгрэйндж? Не лучший выбор смотреть готовое решение на барахолке (на иБэе), особенно из всяко-разно мелко-китайского. Лучший выбор - это потратить время и сначала разобраться во множестве нюансов, что бы в первый же день безвозвратно не потерять леталку и не остатья у "разбитого корыта". Тогда наиболее оптимально взять Мавика да и всё. не обязательно Про-2, с лихвой достаточно обычного, на который уже было 2 уценки. А если начнёте с разобранных китов, то придётся вникать, потратить уйму времени, потерпеть несколько крашей и ремонтов, в общем придётся ещё и ещё докупать мелочёвку, ждать прибытия паков, разбираться, настраивать, согласовывать, читать и читать... В общем возиться. Если вы технарь и нравиться сидеть и конструировать - тогда только киты, а лучше разрозненная комплектуха и самосборка с настройками и доводками. А если просто летать, то сейчас оптимальнее и быстрее взять готовое решение от DJI. Да, немного подороже остального наколенно-подвального Китая, но за то точно сразу полетите и начнёте ловить адреналин и кайфовать.
  11. +1. Я тоже многое повидал и на разном рулил, но с 1996 года только на оригинальных Футабах. Ничего не попалось стабильнее и оптимальнее по цене/качеству/надёжности. (новомодно-чешские "Джети" не в счёт, хотя тоже юзал их) Весь секрет в организации протокола радио-обмена, в плане помехоустойчивости, ну и в софте по юзабилити. Я лично видел, как на чемпионатах мира успешно падали в хлам на Хайтеках, хотя вроде как аппа приличная. Хоть и редко, но случались вопросы и с JR. Так что мой выбор - only Futaba. На второе место поставил бы JR, тоже очень достойное решение для серьёзного применения. Про всякий там хоббийно-новодельный "Китай", вообще не упоминаем, ибо детский сад штаны на лямках. Баловство для начинающих дилетантов, так как предназначено для "одноразовых" хоббистов, в основном попробовать и забросить, ну или летать в пустынных местах с окружающей радио тишиной. Спросите: -"Ну а что же Джети"? Супер-круто, пафосно и очень дорого, больше для олигархов или мажоров. IMHO
  12. Термоусадка термоусадке рознь. Разные производители, разные наполнители в пластике, разная толщина плёнки. Соответственно будет и различное влияние на согласование и формирование ДН антенны. А что бы выбрать канал наилучшим образом, нужно знать частоту резонанса конкретных экземпляров антенн (измерить и донастроить), причём не только передающей, но и приёмных.
  13. Да вот сам аж опешил, от такого удивления.
  14. Появился обзорчик по тестовым измерениям антенн круговой поляризации типа Pagoda-3,. Цель теста узнать величину разброса основных показателей получившихся антенн, при самостоятельной сборке из китовых наборов при помощью прилагающегося кондуктора, продающихся в виде набора деталей печатной платы.
  15. И ещё, формирование токов антенн линейной поляризации и круговой, всё же различное. У вас же на фото приведён пример отсечных стаканов на антенне типа коаксиальный диполь, то есть линейной поляризации. А данная тема как бы сугубо про антенны круговой поляризации. Отсюда возникает уточняющий вопрос: какова получится разница в запорных стаканах, между разными типами антенн одного диапазона, но разными в поляризации формируемого излучения?
  16. Ну то, что нужен запорный стаканчик от натекания на оплётку, это и так всем понятно. В вопросе имелось в виду какой именно методологией оптимальнее выйти к практической конкретике, как то: длина стакана, диаметр стакана, удаление начала стакана от точки пайки элементов антенны к оплётке фидера...
  17. А что по вашему мнению будет называться именно нормальным симметрирующим устройством, касаемо данной антенны "Пагода", или к примеру у "Ромашки"? Как по вашему такое устройство должно выглядеть в физической реальности, а не на виртуальном симуляторе?
  18. Пришла парочка новомодных антенн типа "Пагода", измерил их КСВн: https://clck.ru/AZKvf
  19. Провели предварительный наземный тест дальности радио-железа для нескольких разных линков, для выбора оптимальных, перед инсталляцией на FPV платформу. Читателям не располагающим лишним временем для детального чтения нюансов, сразу предлагается краткая инфо-выжимка: Дистанция 81,1 км, по маршруту гора-долина. Перепад высот составил 1930 метров. Тест 1: Рации Baofeng UV-5R, диапазон LPD (433), мощность 5 и 2 Вт, антенны Uda-Yaga 7-и элементные с обеих сторон линка, а позже одна заменена 4-х элементную. Результат теста - идеальная связь без шумов и прочего. Тест 2: LRS ExpertRC 2G (433Мгц) с прошивкой Baychi, c ручным предварительным выбором каналов под имеющиеся антенны. Программно приготовленная мощность ТХ: 0,2Вт; 2Вт; 6,5Вт. Начал тест с 2-х ватт, но сразу же перешел на 0,2 ватта, так как мощнее не понадобилось. Антенна ТХ: Uda-Yagi 7-и элементная (около 12 дБ) Антенна RX: Vee. Результат теста - отличная работа приёмника по S-Bus. Тест 3: Futaba-10C 2,4Ггц FASST + бустер 0,7 Вт + 7дБ китайский патчик. Два приёмника Futaba R6303SB, с коаксиальными диполями и один такой же приёмник с парой патчей. Результат теста - отличная работа приёмников по S-Bus. Тест 4: Видеолинк 1,2Ггц, нонейм ТХ, мощностью 1,5 Вт. Антенна ТХ: коаксиальный диполь. Антенна RX: FCR 1200-15 Приёмник китайский нонейм 8 каналов. Результат теста: уверенная цветная картинка без искажений и помех, но с незначительным "снегом". Тест 5: Видеолинк 5,8Ггц, 2Вт. Был выбран 8-й канал сетки "Е", на частоте 5945 Мгц. Антенна ТХ: китайский нонейм клевер. Антенна RX: 3,5 витковый Хеликс с офсетным зеркалом 0,6м. Приёмник: обычный китайский 32-х канальный (не диверсити). Результат теста: на удивление чистая цветная картинка, значительно яснее и чище, чем была на 1,2Ггц в этих же условиях на пол-часа раньше. ------------------------------------------------ Внешний вид тестируемого железа на горе, на точке "Point-1": Расположение одной стороны мачты за на горе: Расположение второй стороны мачты для 1,2Ггц: Расположение второй стороны мачты для 5,8Ггц: Вид с горы в долину: Вид с долины на гору: Внешний вид антенн в долине, на точке "Point-2": Приёмная антенна видео 5,8Ггц в долине: Пачка печения на горе: Эта же пачка печенья, но показанная перед камерой и увиденная на мониторе 5,8Ггц в долине:Как видно появился "снежок", но это от того, что после тестов перед выключением, я вспомнил о фотоаппарате и принеся его из машины, случайно зацепил ногой мачту с тарелкой, чем немного сбил ориентировку, ну и видимо попал на край диаграммы направленности. А поскольку замёрз и устал, то не стал поправлять мачту, а просто щёлкнул что было видно и быстро свернулся. Рельеф подстилающей поверхности под линками на этой дистанции: Результаты одного из предварительных расчётов энергетики предстоящей радио-трассы, с учётом реального рельефа местности между выбранными точками приёма и передачи: Вручную выбранные каналы LRS на экране SDR спектроанализатора, под имеющиеся антенны: АЧХ возвратных потерь антенны Uda-Yagi для ТХ LRS: КСВн антенны Uda-Yagi для ТХ LRS: Круговая диаграмма комплексных сопротивлений Вольперта-Смита, этой же антенны Uda-Yagi для ТХ LRS:
  20. Передающая штатная антенна (китайский штырь на магнитике) мне не понравилась по своему КСВн, вообще, по этому в тестах не участвовала. Без Яги штырь может быть и добил бы, но вопрос - "на какой мощности?" А нас изначально интересовала связь не более 0,5 Вт на 100 км, а желательно 0,1Вт или ещё слабее.
  21. P.S. Из вспомнившихся особенностей при тестировании: Удивил хороший запас по энергетике видео линка диапазона 5,8Ггц. Судя по картинке, на 80 км при прямой радиовидимости было бы достаточно хорошо настроенного сетапа с мощностью ТХ в 600мВт (ну может 800мВт максимум). А 2Вт - это очень много, потребление ТХ на борту при этом 1,4А. Этих двух ватт видео мощности хватило бы на 150-200 км. Летом можно проверить и на 154 км, так как есть точки подъезда на такую дистанцию (при свободном Френеле).
  22. Проверяли при работающей LRS на LPD, как обычно немного придавливался приём видео на 1,2Ггц, даже при минимальной мощности ТХ в 0,2Вт. А на горЕ, LRS приёмнику никак не мешал 1,5 Вт передатчик на 1,2Ггц. Управление на 2,4 не было протестировано одновременно с видео. На видео 5,8 был тест совместимости с радио управлением. Приёму видео никак не мешала LRS (433), так же как и приёму LRS на горЕ никак не мешал видео ТХ мощностью в 2Вт диапазона 5,8.
  23. Составлялось ночью по быстрому, местами вышло с опечатками и ошибками. Планировалось что-то позже дополнить. Но на утро глянул и вижу, что по сути-то особо и нечего добавлять, или уже подзабылось что планировал добавить. Если вы обозначите круг вопросов, то постараюсь на них дать изложения некоторых фактов или нюансов.
  24. Спокойно летали на коптере именно с этой аппаратурой на 3,5 км, в стоковом исполнении, то есть без всяких там "костылей" в виде бустеров или замены антенн. Кстати, 6J у Футабы это младшая модель, соответственно и протокол в ней применён не топовый FASST, а попроще.
  25. Тоже измерил Футабу 10G с протоколом FASST. В импульсном режиме намерялось 62 мВт, что и было ожидаемо.